AD-A213 713

The Programmer’s Guide to Moviola:
An Interactive Execution History Browser

Robert Fowler and Ivan Bella

Technical Report 269
February 1989

DTIC

&% ELECTE
0CT 311984

”B

UNIVERSITY OF

ROCHESTER

COMPUTER SCIENCE

T DISTRIe TN oS ATRRATYIT R - e
Approved tor pul e releasre; : . 7 - :)
Disrthivion, "' Umited

— o ———— — .

The Programimer’s Guide to Moviola:
An Interactive Execution History Browser

Robert Fowler
Ivan Bella

The University of Rochester
Computer Science Department

Rochester. New York 14627
Technical Report 269

February 1989

Abstract

Moviola is an interactive browser used to create, examine, and manipulate graphical representations
of synchronization histories of concurrent programs. It is part of an integrated. programmable toolkit
for debugging and performance tuning parallel programs. This guide presents Moviola by describing
its use as a standalone program and as a component of the toolkit. In addition, we describe the

interface seen by a programmer of the toolkit.

This work is supported in part by U. S. Army Engineering Topographic Laboratories research contract DACA
76-85-C-0001, in part by ONR research coi.. &« NUOUI4 C3-K-U655 and N0O0014-87-K-0548, and in part by NSF
research grant CCR-8704492.

SELCURITY CLASSIFICATION DF THIS FPRAGE [WITBIT DETT TITTeTeY

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFCEAD INSTRUCTIONS
1. REPORT NUMBER 2 GOVY ACCESSION NO.| 3 RECIPIENT'S CATALOG NUMBER
269
4. TITLE (and Subtitle) S TYPE OF REPORT & PERIOD COVERED

Technical Report
The Programmer's Guide to Moviola:

An Interactive Execution Historv Browser

6. PERFORMING ORG. REPORYT NUMBER

7. AUTHOR/(s) B CONTRACT OR GRANT NUMBER s
DACA76-85-C-0001
Robert Fowler and Ivan Bella NOOO 14-87-K-0548
NOOO 14-84-K-0655
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT PROJECT, TASK

. AREA & WORK UNIT NUMBERS
Computer Science Department

734 Computer Studies Bldg
University of Rochester. Rochester, NY 14627

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REESBT DATE

. Adv. Res. Proj. Agency ruary 19¢3
1400 Wilson Blvd. 13. NU?§ER OF PAGES
Arlington VA 22209

14. MONITORING AGENCY NAME & ADDRESS(!/! ditferent trom Controlling Office) 15. SECURITY CLASS. (of this report;

Office of Naval Res. US Army ETL Unclassified
Information Systems Fort Belvoir
Arlington, VA 22217 VA 22060 TS DECLASSIFICATION DOWNGRADING

6. DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

7. DISTRIBUT!ON STATEMENT (of the abstract entered in Block 20, if difterent from Repor!)

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide i necessary and identify by block number)

visualization, performance analysis, multiprocessor, debugging,
program replay, parallel programming environments

20. ABSTRACT (Continue on reveras alde {f necessary and identity by block number)

Moviola is an interactive browser used to create, examine, and manipulate
graphica] representations of synchronization histories of concurrent programs.
It is part of an integrated, programmable toolkit for debugging and perfor-
mance tuning parallel programs. This guide presents Moviola by describing

1ts use as a'standalone program and as a component of the toolkit. In
addition, we describe the interface seen by a programmer of the toolkit.

¢

DD /2%, 1473 eoimion oF 1 Nov 65 1s cesoLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Dera Entered

1 Introduction

Moriola is an interactive browser used to create, examine, and manipulate graphical representa-
tions of synchronization histories of concurrent programs. It is part of an integrated. programmabhle
kit of tools under development hy the “Parallel Program Understanding Techniques and Tools”
(PPUTTS) group in the University of Rochester Computer Science Department [Fowler et al., 195x7.
The PU LTS Toolkit 1s a collection of programs designed to help programmers understand in detail
the behavior of parallel programs that use explicit and potentially fine-grained synchronization an-
locking operaticns to control access to shared resources. The goal is to facilitate the logical debue-
ging, the performance debugging. and the performance analysis of these programs i much the same
way interactive debuggers and profilers are used to analyze the behavior of sequential programs
The Toolkit is based on an extension of the Instant Replay [LeBlanc and Mellor-Crummey. 1087
technique for recording synchronization Listories of parallel programs. Data recorded in the histaries
allow the deterministic replay of the program execution under a debugger as well as detailed perfor-
mance analysis for debugging and tuning. Moriola is the common user interface for the analyvsis and
graphical manipulation of those histories. These core facilities form a foundation upon which we are
constructing more complex toolz such as symbolic debuggers, execution profilers. and performiance

analvzers.

The synchronization history of an execution of a parallel program is a partial ordering of the
events in that execution. Moriola represents it as a directed acyclic graph. The vertices of the grapl,
are events. each of which is the execution of an operation on a shared object through which processes
can synchronize and communicate. Instrumented svnchronization primitives record the detajls of
each operation in the local synchronization histors . ' invoking process. Morviola combines the
local histories to form the global history. Dependi.. - 1he style of parallel programming used iu
the target program. events may consist of the sending and receiving of messages. the reading and
writing of shared variables protected with a locking protocol, the operations of other constructs for
concurrent programming. or a combination of several of these. Each directed edge in the graph
represents a temporal dependency between the pair of events it joins [Lamport, 1978}, Az in Lam-
port’s treatment of time in distributed systems, the events on each processor are totally ordered
with an edge from each event to the next succeeding event on that processor. The event at which
a message is sent will be joined with the event at which it is received. An edge can also represent

a conflict ([Bernstein et al., 1987), Chapter 2) dependency between operations on a shared variable.

later operation that reads that value. a read-write conflict between a read and a subsequent write |

operation that destroyvs the value read, or a conflict between a pair of write operations.

Moviola presents synchronization history graphs as time-space diagrams (See Figure 1). In the

diagram, time flows from top to bottom: all edges in the graph are imoplicitly directed from top to

bottom. Events that occur within a single process are aligned vertically. forming a time line for that 55/

~oscamiadty Codes

l /",ﬂ. 7‘,". \‘\' ' ::“Iﬂ1 l— und/or |
Dist Tpacinl

' L

RY) ¢ SR

| 1t 7
,Jéf""!z- : : :
. 3 33
R
B 4 N—————
- H _— —p-—t
%; >
t‘z -
o4 ~ /
ﬂj = = ——— =
[1 T= =
rqn Y - pY : o—
.__{ ‘Iﬁ-‘—"-—‘—.—’
il - I = P A S P ———
4 p- ’
- 1 h
L 4B
4 £ —
F 4 - -
HE a i
PN £ -
Nl e = = —— —
-4 T e - e]
Sl = = |
»J ‘r’)
a2 Y -
R s RN — g
T A
q-;.—- —
- p: -
{F
RN I
R ==
i v":‘_—

i

a3
e

u

i

b

f

I

TT

T

T

Fooor o e par e ede sindow displayving part of the synchromzation history of i progran
thot oo ives asyvsieins of Iinoar equations using parallel Gaussian elimunarion, The synchronzan o,
fowr oo ct the program s deplaved as oo diveeted acyelic graph in the central pane Menu hoadors
arowttteed across i top of the graph pane. On the bottom is a message {text) pane. A horizontal
e bar s dispdaned betae oo the message and graph panes. On the right 15 a verucal elevator
bar 4 e cnos f e clevatar hars are arrowheads for scrolling. The small pane in the lower rivke
ortorocontans S diagenal crrowheads The bar on the jeft displayvs the tane scaleand the
arrve v heebow b s aecd o teonify e waindow

process. Diagonal edges represent inter-process dependencies. Each event is presented as a shaded
box whose height is proportional to its duration. The box is divided into a waiting time component
and an execution time component. Depending on the synchronization and communication primitives
used. a processor may have to wait for a message to arrive, for a buffer to be filled or emptied. or for
a lock on a shared variable to becomne available. Excessive waiting is an indication of performance
problems. The graphical presentation of waiting in the Moviola display helps to draw the user's

attention to these problems.

Although the execution of each pair of conflicting operations adds an ordering constraint be-
tween them, programmers are often concerned only with the subset of edges that entail the fiow of
information between processes. Morviola therefore uses the full set of edges to derive a consistrut
global clock used to determine the placement of events along the time axis. but the programmer can

specify a different set to be “interesting” enough to be displaved.

Moviola can either be run as a standalone program or as part of the PPUTTs Toolkit. The
Toolkit (See Figure 2.} consists of a collection of programs (tools) that run under the aegis of and
interact through a Common Lisp system (Kyvoto Common Lisp [Yuasa and Hagival). User interae-
tion 1s through version 11 of X Windows [Gettys and Scheifler, 1986]. Tools can be written in otlier
languages as well as in Lisp. The Lisp interface to Mowiola includes a package through which Lisp
code can access and manipulate Moviola'sinternal data structures. This package includes functions
for the management of multiple execution histories in multiple windows and facilities for extending
Moviola'suser interface. The Lisp interface is the foundation upon which we are constructing the
interfaces between Moviola and other components of the Toolkit. Performance analysis and debug-
ging tools are able to install themselves to use Motiola both as a common execution graph manager

as well as to provide a common user interface.

2 Using Moviola in Standalone Mode

To run Moviola in standalone mode on a Sun 3 execute:

moviola [history_directory] [-d defaultsfile] { -D display.name]

The arguments to the command line are:

history directory is a path to the directory containing the synchronization history of interest. The
history is stored as a set of individual process history files. The directory must contain a file
named “name” whose first line is a text string specifying the prefix of the data file names.
The second line of text is the name identifying which instrumentation package was used for
the current synchronization history. The format of a data file name is: prefir.poid where
prefir is the prefix mentioned above, and poid is a hexidecimal process identifier number.

-d: This option allows a .moviolarc initialization file to be specified explicitly.

Graphics Shared Files Target

Workstation Multiprocessor
Ui Message Dispatcher Communication
1
Sp X Windows Central
interface L
Tools:
Execution Shells
Debuggers
Pecormance Moanitors r
Performance Analyzars
Replay Data Recorders Monitor g
Replay Daa Anslyzers Module Application
P es
Target Tool Complier Debug rocess P
... and more Stub
Moviola Interface Target
Tools

Moviola Per Processor Modules

Execution
Histories

Figure 2: The organization of the PPUT[s Toolkit.

-D: The default display used by X11 is specified by the environment variable “DISPLAY".
Moviols will use this unless otherwise specified by this option. The display name is of the
format: hostname:number.screevnumber. See the X11 documentation for a description of
the display variable.

Whon Moviola starts. it opens its main window, loads the execution history (if specified}. and
displays the history in the graph pane (See Figure 1). The menu headers at the top of the main
window are used to activate a set of pull-down menus. The darkened parts of elevator bars on the
right and across the bottom show the position of the viewport in the graph pane relative to the
whole history. Clicking the mouse in an elevator will move the viewport positien. Clicking on an
arrowhead at the ends of an elevator bar will move the viewport a fixed distance in the indicated
direction. The ruler on the left displays the time scale in units of “ticks,” the resolution of the
clock used to record event timestamps. Messages to the user are displaved in the text window at
the botiom. Text entered by the user is also echoed there. Clicking on the small pane containing a

butterfly icon below the ruler will “iconifv” the main window.

2.1 Interacting with AMoviola

The graphical interface provided by Mouviola is extremely flexible. In addition to generic panning
and zooming facilities. it provides facilities for interactively customizing the user’s view of the graph
to focus on the interesting parts of the history. The user has the ability to define subsets of processes

to display or highlight, control over the order of processes in the display. and the ability to highlight

or suppress events represeliting operations on specified subsets of shared resources. There 1x als o

facility to definie the set of interesting event dependencies that should be displayed.

Commands and options can be invoked through pull-down menus, pop-up menus, or through
mouse events caused by pressing or clicking mouse buttons. optionally holding down one or more

kevs on the kevboard.

To activate a pull-down menu, point to the menu header with the mouse and Lold down a mouse
button. Pop-up menus are activated by mouse events while pointing to something inside the graph
pane. In both cases dragging the mouse downwards will highlight each menu item as the pointer
passes through it. To select a highlighted item release the mouse button. Unless otherwise stated.

selecting a menu itemn toggles the corresponding option.

2.1.1 Moving around the synchronization graph

Moviola provides many ways to select the portion of the svnchronization history graph to display 1
the viewport of the graph pane. Most of them are bound to mouse events. The actual button 'key

combinations are specified in an initialization file called “.movbindrc”. For details see section .21

Arrowheads: Clicking the mouse when the cursor is in one of the arrowheads at the end of 11
elevator bars will move the viewport in the indicated direction. Holding the button down
will repeat the motion.

Elevator Bars: The total iength of the vertical (horizontal) elevator bar represents the vertical
(respectively horizontal) extent of the history graph. The dark region in each bar d=notec
that part of graph that is currently visible in the viewport. Clicking the cursor in either of
the elevator bars will center the viewport on that relative position in the graph.

Zoom In* One can zoom in on a section of the history by designating a rectangular region of
the history to be expanded to fill the graph window. The x and y coordinates are scaled
independently. The region is designated by selecting one of its corners with the mouse, and
while the appropriate key /button combination (by default, (no keys)/middle button) is held
down. drag the cursor to the diagonally opposite corner and release.

Zoom Qut: The contents of the current graph pane are scaled down to fit into a rectangular
area. The area is designated as described above. The default key/button combination is (no
keys)/right button.

Jump: By clicking the button/key combination (by default (no keys)/left button) in the graph
pane, the point where the mouse was will be moved into the center of the graph pane.

Scroll: Holding this button/key combination (by default shift/left button) down changes the
cursor to a hand that “grabs” the graph so that it can be moved around. Releasing the
cursor will leave the graph in the new position.

Undo: By clicking this button/key combination (by default control/middle button) in the graph
pane. you can undo the effects of the last operation in this section.

Ruler: Selecting a time interval by selecting and dragging with the left mouse button over a
portion of the ruler bar on the left side of the display opens a small window describing that
interval both in terms of “ticks™ and milliseconds.

o

3 EVENT DATA »x
POID EVENT TIME SOID VREN Wait-T Work-T INDEX STATUS OP
d 756 14418736 20001614 16 1575 (o] 10 D POLHULL
IOIDIIDDIDIIIINIINIIIIDIILIIVIIIIINNIIIIOIDY L {LLLLLLLLLLLLLLLLLLLKKKLLKKL
¢ OUT LINES »x
POIL EVENT TIME SOID VREN Wait-T Work-T INDEX STATUS OFP
d 7857 4420424 22001¢44 16 394 0 i1 D POLNULL
IOIIDDIDIIIIVDIVIIDNIDIVDINININIINIINININIINIIIIDID Y KL LL€L{L{LCLLLLLLCLLLLL LKL
s IN LINES »x

POID EVENT TIME SOID VRSN MWait-T Work-T INDEX STATUS OP

d 755 1418571 1c00i6ld4 16 21 ¢ 9 D POLNULL
POID EVENT TIME SOID VRSN MWait-T Work-T STATUS OP

b 756 1419275 20001614 15 9 © D HWRITSTART

DIXDID3PXIII3000000500005005 00055059 €Ll
»» PROCESS HEADER DATA »x
POID #EVENTS ENTRY EXIT LIFE STATUS OP
d 82¢ 304465 1463209 1158744 D HEAD

Figure 3. An event data window.

.1.2 Examuning events in detail

Th data’ comman! is used to open data windows in which the details of selected events are
dwplas ottt need taaxamine detaile ~€ the hictorv as a whole. By default the key/button
combinatien is <hift /middie button Pressing and holdiny, *his combination in the graph pane or in
a data window will por up a menu.

Pressivg ar-d holding on an event in the graph pane activates the Event Data menu pop-up menu.

Prassing and Loléding on a Line of text representing an event in a data window has a similar effect.

T

he tirst item in this menu is “Event Data” . Selecting this item will open a data window containing

details about the event. See Figire 3. The data given in this window is determined by the first four

iterns n the “Dump Data” pull-down menu:

In Lines: List events that directly affect this event (with their event data).
Out Lines: List events (with their event data) that this event directly affects.
Proc Data: Display raw data from the header of the process containing this event.

Event Data: Display details about this event.

Pressing and holding in the graph window, but not on an event, opens a History Data menu.

The first 1tem in this menu will always be “History Data”. Selecting this item will display the data

about the history in the message window at the bottom of the Moviola window.

In addition to the Event Data and History Data items. the installation of other tools in the

Toolkit can extend the Mouicla user interface by adding additional 1tems to these menus.

2.1.3 Controlling the Display

Four of the pull-down menus contain commands and options that control the appearan- of tie

graph in the display.

Label Menu: This menu controls the labelling of events in the display. The cptions are minrually
exclusive.

Op ID: Display the identifier for the type of event.

Obj ID: Display the 1) of the object referenced by the event
Proc ID: Display the ID of the process containing this event.
Event ID: Display the ID of the event within its process.

Display Menu: This menu controls the major display modes: logical vs. physical tine bas
display dependencies from .movsyncre or .m-oviolarc, and specify the display order of th.
processors.

Logical: Toggle between physical and logical time bases. If the physical time hase s
chosen. the time axis is 2 good approximation to a consistant gichal clork ta withse,
the granularity of the local timestamps recorded in events. The logical i base s
a topological sort based on the dependencies defined in the movaynere defanl:s il
The logical time of an event is the layer of a topological sort of the grapl in whieh it
appears. No reference is made to the time stamps i events. hence all of the everss
have the same height.

Sync Display: Toggle between displaving the dependencies defined in .movsvnere and
those defined in .moviolarc. See sections 2.2.2 and 2.2.5. This option also aff-c1s
the dependencies listed in Event Data windows.

Process Order: Selecting thisitem will open a window that displays the current proces<s
order. The process at the top of the list is the leftmost process in the display. and th-
process at the bottom of the list is the rightmost. There are thror wavs to modify
the ordering. Clicking on “>" or <" in this window will order the processes 1
descending (respectively. ascending) process identifier numbers. Chcking on ~H”
will order the processes by a heuristic that attempts to reduce the number of edee
crossings in the dispiay. The heuristic ordering places the process with the most
edges in the center. The processes with the most edges connected to the already
placed process(es) are placed on either side. This step is iterated until all of the
Erocesses have been placed. Manual reordering is the third method. Pressing and

olding the mouse on one of a process identifier in the window. and then releasing
the mouse on top of another process identifier will mcve the first process past the
second in the direction moved. Moving a process upwards places it before the secon!
process: moving it downward places it after the second.

Lines Menu: The first three items of this menu control the display of cross edges between
events on the display and those off the screen. If none of the first three options are chosen.
then only the edges between displayed events appear.

In Lines: For any event currently in the graph pane display the edges coming onto the
screen from events that directly affect this event.

Out Lines: For any event currently in the graph pane, display the edges leaving the
screen to events that this event directly affects.

All Lines: Display ali edges of the graph that intersect the screen, whether or nct they
are incident to events or the screen. Since this option slows the display time, and
clutters the graph pane, it is normally not used interactively with Movio/s . Its
main use is to insure consistency when a hard copy is constructed from multiple
screen dumps. Choosing this item deselects both of the previous two items.

Onl)f'iDirect: Display only those cross edges for which the second event waits for the
rst.

Tl K0 it

Filters Menu: Whether an evert or edee s disploved b whetber s hshl gloed g ooy
trefied by a number of filters. An event or eduee 15 displaycd cnby af all flrers albaw
beo An event or edee is bighhghted if ighhghting is roquested by at least cne fileer WL
subset of process, object. and cperati m-type filters to use and whether they affe U everns
and, or edges are determined by acuvating the first selection under this menu

Choose Filters: This option opens a window for choosing which filters are used and
whether they are used for events and/or cross hines. The possible filters are “Pro-
cess”, "Object”™, and ~OplD”. The filters are defined by partittioning the <ot of
processes or ohiscts nto tﬁm*e categonies not displaved. dispiasyed. and nighiiglnd

Choose Process: This optinn opens a windew for defining the process filiers I tin
window. clicking cn the row of a pracess ID will give that process the ctatus carr-
sponding to column you clicked on. 1§ you click on "Display A", "Display N o7
or “Highlight All" in the window. all processes will get the rorresponding staros
Choosing this item; when the window 1s already o;]wen will close the window T
process order 1s recamputed and the graph is redisplayed when the window s close !
or when vou click on “redicplay™ in the window

Choose Object: This cption opens a window for defining the objeer fliere o th
window . chicking on the row of a object 1D will give that obgert the starmus corne
sponsding to column you clicked on. If vou click on "Display A7 “Display None ™
cr “Highhght Al an the window, all of the objects wilh get the corresprriding status
Choosing the mem atern when the window is already open will close the winidow
The Hra;%h is redisplayed when the window s closed or when vou click on redispin ™
i the window,

Choose OplD: This option opens a window for defining operation identifir filte s 1
ibe window. chicking on the row of a the identifier of an operatinn type chia
operation tvpe to the status carresponding to column vou cheked on 1§ vou chick .
“Display All . “Display None™ . or "Highlight All" in the window. all aperation types
will get the correspondire status Choosing the itemn when the window 1s alreafy
op-n will close toe window. The graph s redisplayed when the window 1< closed or
when yvou chick on “redisplay™ o U wine o

snges the

2.1.4 Miscellaneous Commands Menu
Aiscellaneous Pane: The “Miscellaneons" menu provides the means to obtain help as woll as
te perform miscellaneous operations sueh as reading an alternate .moviolare defaults il
reafing a new svichrenization history. and redrawing the screen. Information about the
de Taults files are explained in the Defaults Fiie section of the “man page”.
Man Page: This item opens a text window with the manual page. If chosen while the
help window 15 open. the window 1g closed.
Bindings: This item opens a window showing the current bindings of mouse button key
combinatic t:s te cominands.
ReDraw: This item will refresh evervthing in the main window,

New File: This item is for getting a new history file attached to this window. A request
for the history directcry name will appear in the message window. Type the name
followed by return to enter it.

Defaults: This item reads a new mnviolare defaults file. The file name is requested the
same way as the New File option.

Raise Data: This item will raise all of the data windows.
New Window: This item will open another copy of Moriola .

Syuc Clocks: This item wili svnchronize the clocks using the dependencies defined in
the movsyncere file

The Close Function: This exits Morwola . A button/key combination is also bound to a
“CLOSE” command that is defined for all Morniola windows. Before any window is ac-
tually closed you must confirm that you really intended to by performing a second butten
chiek in the same window

—_—

Keyboard If the mousc pointer is in the main window of the Mormcla parkage. any kevarrok
will be sent to the message window. Pressing return will send the string to be proceseed
This 1s used for entering file names te choose a new defaults file, a new displayv. or a new
file. If vou type “quit” and press return. Moviela will quit.

In All Text Windows: Ifa text window has "< <<MORE >>>" at the bottom. then a butron
che' (except for any button/key combination defined to do semething else¢j in the window
will get the next page of text.

Clock Data: Under the “Dump Data™ menu is a item labeled “Clock Data™. This item opers
a window that displays the relations between the local clocks of any pair of proresses. The
left button goes forward through the list of pairs. the right button goes backward. Ti
middle button zooms in and out by clicking. The shift/control/or meta keys alone winl;
the left button toggles the process-1 to process-2 dependency points {the squares). One of
the keys with the left button toggles the process-2 to process-1 dependency pointe. One of
the keys with the nuddle button toggles the displaving of lines. The lines represent the the
synchronization whe e the slope s the scale. and the v intercept is the offset of process-2 10
relation to process-1.

2.2 Customizing Morviola

Wher Moriola isstarted. it configures itself according to the contents of three initialization files. Al
imtialization files have a common syntax consisting of command lines. each of which is a sequene.
of keywords and values. All words must be separated by white-space, defined to be anyv sequence of
the following characters: [space]. '=". . ’&"."|. ™", and " In each section the separators are chosen
by ¢onvention for readability. Whenever the character "#’ is found in a file. the rest of the line is
treated as a comment. Eacl. sommand line is terminated by the end of the line. All information i

initialization files is case insensitive.

Each of the three initialization files has a distinct function. The file “.movbindrc”™ binds com-
mands to keys and buttons and defines the initial window configuraticn. The initialization fil«
movsyncre. <package-name > defines the inherent temporal dependencies among events as deter-
mined by the instumentation library that records the history. These are generally a superset of the
dependencies a user wants to display. This file is usually created by the authors of the synchroniza-
tion library and is not modified by the user. The file .moviolarc. <package-name > defines the initia!

status of the display and the set of user-defined Adependencies to display.

An instrumentation package designator must be part of the names of the “.moviolarc”™ and

“.movsyncrc” files to designate the instrumentation that recorded the history. For example, “.moviolarc chrys”

indicates that our standard Chrysalis instrumentation was used.

2.2.1 .movbindrc

This file defines bindings between mouse events (button/key combinations) to Moriola commands

Mouse events that are not defined here may inherit commands from the X window manager The

#PARAMETER = INITIAL VALUE
#

X = 10

Y = 200

WIDTH = 512

HEIGHT = 512

#

#FUNCTION = KEYS : BUTTON
#oommom—e = ---- P e
CLOSE = SHIFT : RIGHT
DATA = SHIFT : MIDDLE
SCROLL = SHIFT : LEFT
JUMP = NONE : LEFT
200M0UT = NONE : RIGHT
Z00MIN = NONE : MIDDLE
UNDO = CONTROL : MIDDLE

Figure 4: The default .movbindrc file.

fil: also specifies the initial placement of the main window. The current directory, the user’s home
directory. and then a system-defined standard directory are searched in that order. It is read onlv

when Moviela is initialized. Figure 4 illustrates the definition of the default bindings.

Binding Definitions The format used to bind a command is furclion = keys : buiton. (Note
that the separators used here are chosen by convention.) This is just like the binding
commands in a uwmre file (used by the uwm window manager) except that the context is
always “window” (as opposed to “icon”). Holding down the specified keys on the keyboard
while clicking or holding the mouse button will invoke the command.

KEYS: The choices are SHIFT, META, CONTROL, ALL, and NONE or any combi-
nation of the first three (i.e. “SHIFT & META", etc.).

BUTTON: The choices are RIGHT, MIDDLE, and LEFT.

The Moviola commands that can be bound to mouse events are:

ZOOMIN: This is the “zoom in” command defined on the .:uph on.

ZOOMOUT: This is the “zoom out” command defined on the graph pane.
CLOSE: This is the “close” comnmand defined on all Moviola windows.

DATA: This is the command that will bring up the pop-up menus in the graph pane.
JT 7iv: This is the “jump” command defined on the graph pane and data windows.
¢ .7 LL: This is the “scroll” command defined on the graph pane.

- .»s0O: This is the “undo” command defined on the graph pane.

Initia! Con. ration This section defines the initial placement and size of the window. Each
co.rmand line takes the form

parameler = initial value.

X & Y: These are to define the initial x and y coordinates (in pixels) relative to the
root window.

WIDTH & HEIGHT: These are to define the initial width and height (in pixels) of
the tool's window.

10

2.2.2 .movsyncrce

This file specifies when a pair of events on a shared ohject define an inherent temiporal dependeney
This 1s determined by the semantics of the instrumented synchronization primitives used to record
histories. For that reason, a .movsyncrc file is usually created by the author of the corresponding
synchronization packages. Moviola only assumes that the timestamps each process uses in recording
its own history are generated hy a local clock. The inherent temporal dependencies are used as the
basis for deriving a single consistent gobal time base. We use the methiod described in [Duda €t al .
1987] to derive our best approximation to a global physical clock. The .movsynere file is read onee
when Moviola starts up. The search path is the data directory. the current directory. the user’s

home directory. and finally the standard directory.

Class Definitions An instumentation package assigns an integer operation tvpe code to «u-,
tvpe of event. This classification is usually finer than needed for deriving a ronsists
global clock. Class definitions are therefore used to aggregate operation types Into coarst
equivalence classes. The command opfype = class assigns the operation tvpe to the corre-
sponding class. Optype is either an integer operation code defined in the instrumentation
package or a keyword denoting one of the following following system-defined event typos
MASTER_PROCESS. PROCESS_HEAD. USER.DEFINED.TAG. SYSTEM_DEFINED_TAG.
PROCESS.CREATE. EVENT_ERROR. or DIVISION. Note that the class number cannot
be larger than the maximum opfype number plus 7 (for the 7 system types). A typical set
of operaticn types is defined in the sample .moviolarc file.

Dependency Definitions This section defines predicates that specify whether an event is con-
sidered dependent on another event. Dependency is determined by applying a test to pairs of
events in the classes defined in the previous section. The format of a dependency definition
i1s cross: IstField : rel . 2ndField. Cross is of the form class->class. An event of the 214
class depends on an event of the 1st class if both events are operations on the same ol ject.
and the value of the IstField of the first event is in relation rei to the value of the 2ndFicld
of the second event. The possible Field's are POID. OPID, VRSN, ENTRY. EXIT. LIFE.
WTIME. and ETIME. These fields are recorded by all history recorders. Rel must be one
of <. >, N<.or N>. N< and N> mean that the IstField must be N less than or greater
than the 2ndField respectively. The string “==" has been specially defined as a REL since
the character ‘=" is considered white-space. For example, “2->3 VRSN 1<VRSN™ means
“~vents of class 3 depend on events of class 2 when the version number of the first event is
one less than the version number of the second event.” (Note that “->" is NOT white-space.
and there is no white-space between the two classes.) If two event classes always depend
on each other, then NONE can be used instead of the FIELD's and REL. The only tests
currently used are comparisons of object version numbers.

2.2.3 .moviolarc

This file has four sections. The first specifies the initial state of the display. The second defines filters
to be used on events and cross lines, the initial process and object filters. and the initial ordering of
the processes. The third section defines a set of operation classes used in the display and it specifies

how events are to be labelled. The fourth part defines the set of dependencies to be displaved. A

11

—

#INDEX = TYPE
o = —ee-
0 = 2
1 = 3
2 = 4
3 = 2
4 = 8
5 = 8
6 = 8
7 = 8
8 = 8
) = 8
10 = 5
11 = 5
12 = 5
13 = 5
14 = 5
15 = 3
16 = 7
17 = 2
18 = 6

MASTER_PROCESS
PROCESS_EBEAD
PROCESS_CREATE
#

CRCSS

NI HERERBREREEEEREREREERERARRR

ist FIELD :

KONE
VRSN
VRSN
VRSN
VRSN
VRSN
VRSN

PollWriteStart
PollReadStart
PollNull
MemoryDelete
EventReset
EventPost
EventData
EventDelete
EventWaiv
EventMWait
DualQEng
DualQTryEng
DualQWait
DualQPoll
DualQDelete
MemoryReadStart
MemoryReadEnd
MemoryWriteStart
MemoryWriteEnd

1
1
0

TEST

2nd FIELD

VRSN

VRSN

VRSN

VRSN
VRSN

1< VRSN

Figure 5: The default file: .movsyncre.chyrs. This is the default file corresponding to the standard
set of synchronization primitives used with programs running directly on the Chrysalis operating

system.

12

moviclare file 1s read every time a history is loaded. Meowiola searches first 1 the directory from
which the history is read. then the current working directory, and finally the user’s heme directory.
Tuis search path is overridden if the -d option is used on the command line. A new .moviolare file
can also be read explicitly using the “Defaults”™ command under the “Miscellaneous™ menu. If a
dependency creates an edge that appears to go backwards in time an error message is printed and

the edge is discarded.

Initial Display This section specifies the initial state of the display. The format of commands
is variable = initiall'alue. Refer to the sample default file for reference.

XSTART & YSTART: These are the coordinates of the point that is initially dis-
plaved in the upper left hand corner of the graph pane. If XSTART = N then
the” Nth process of the display will be placed in the left side of the graph pane. 1If
YSTART = T and the physical time base is chosen, then time T (in ticks) will L.
placed at the top of the window. If the logical time base is chosen. then if YSTART
= T. the Til, layer of the graph will be placed at the top.

XSCALE & YSCALE: These are the initial scale factors used for the graph in the x

and v directions. The x dimension is measured in processes. and the ¥ dimension 1»
measured in ticks or levels (for the logical display).

DUMPDATA: This initializes the menu specifving what raw data displaved wher an
8‘{?}_}1 s 0 elr)\gd. The initial value is specified by the keywords: EVENT. PROCESS.
.and IN.

LABEL: This initializes the menu that specifies the type of label used for event- in
the graph pane. The initial value is specified by the keywords: OPERATION.
PROCLSS. OBJECT. and EVENT.

LOGICAL: This initializes the menu item c_ontrollin% whether the logical or physical
time base is used. Possible values are ON and OFF.

SYNC: This initializes the menu item that specifies whether to display the dependencies
from(_).movs_\‘ncrc rather than those defined in .moviolarc. Possible values ar- ON
and OFF.

LINE: This initializes the menu that specifies which lines are being displayed. Possible
values are IN and/or OUT, or ALL.

ONLYDIRECT: The option can be initialized as ON or OFF.

Filters ThLis group of commands can enable and initialize the commands available under the
“Filters” menu. A line of the form

entity : FILTER : object,

where entity is one of PROCESS, OBJECT, or OPERATION and object is one or more of
EVENT or LINE will enable application of the filter for the entities to the specified class of
graphical objects. (Note that filtering by operation type is applicable only to events.)

The filters are initialized by a sequence of lines of the form
entity : status : { identifier mid ALL },

where entity is one of PROCESS, OBJECT, or OPERATION, status is one of HIGHLIGHT.
DISPLAY. NODISPLAY, or REMOVE, and identifier is the numerical identifier of the entity
affected: a process identifier, an event type number, or an operation type number. The
kevwords NODISPLAY and REMOVE are synonymous. Since the lines are processed in
order the easy way to suppress the display of a single process is to first request that all
processes be displaved and then REMOVE the appropriate process.

The initial ordering of processes is defined by a line of the form

13

#VARIABLE = INITIAL CONSTANT{s]

XSTART =0

YSTART =0

XSCALE = 50

YSCALE = 20

DUMPDATA = EVENT & OUT & PROCESS

LABEL = DPERATION

LOGICAL = OFF

SYNC = QFF

LINE = IN & OUT

ONLYDIRECT = QFF

#

#PROC/08] : DIS/NODIS/REM/HL : ALL/OBJECTID

/LISP: FILTER : EVENT & LINE

: ORDER : <,>,HEURISTIC

———————— P mmmmeme 1 emm—m—— e

PROCESS : DISPLAY : ALL

OBJECT : DISPLAY . ALL

OPERATICN : DISPLAY . ALL

PROCESS : FILTER : EVENT & LINE

OBJECT : FILTER : EVENT

OPERATION : FILTER . EVENT

PROCESS . ORDER : <

#INDEX = LABEL { ABBR. | TYPE

f=—-—— 2 mem—e—- | e ————

0 = PolWriteS | PWS |1

1 = PolReadS | PRS | 2

2 = PolKull i PN I 5

3 = MemoryDel | HMD !

4 = EvntReset] ER | 8

5 = EvntPost | EP | 8

6 = EvntData . EDt 1

7 = EvntDel | ED | 8

8 = EvntWait | EW | 8

9 = EvntMWait | EM | 8

10 = DualqEng | DE I 7

11 = DualqTry | DT 7

12 = DualqWait | DW b7

13 = DualqPoll | DP L7

14 = DualgDel | DD b7

15 = ReadStart | RS | 2

16 = ReadEnd | RE |

17 = WritStart | WS | 1

18 = WriteEnd ! WE | 6

MASTER_PROCESS = Master | M | O
PROCESS_HEAD = Head | E | 0
USER_DEFINED_TAG = UserDfTag | UT]
SYSTEM_DEFINED_TAG = SysDfTag | ST l
PROCESS_CREATE = ProCreate | PC | 3
EVENT_ERROR = ERROR | E |
DIVISION = DIVISION] DV | 4

#

#CROSS : ist FIELD : TEST : 2nd FIELD
#~— T mmmemem—— : ———— 1 mmeeee—oe
1->2 : VRSN : i< : VRSK #W->R
#2->1 : VRSN : \= H VRSN #R->VW
#1->1 : VRSN : i< : VRSN #W->W
3~>0 : NONE #PC->H
#4->4 : VRSN : i< H VRSN #DV->DV
i~>56 : VRSN : i< : VRSN #W->P
T~->7 : VRSN : i< : VRSN #DQ->DQ
8~>8 : VRSN : i< : VRSN #EV->EV

Figure 6: A sample .moviolarc.chrys file: This is the default file corresponding to the standard set of
synchronization primitives used with programs running directly on the Chrysalis operating system.

14

PROCESS : ORDER : {"<" | *>" | HEURISTIC }.

Labels This section defines equivalence classes on operation types and assigns display lalels -
them. Each line 1s of the form

optype « label | abbr | class

The label and abbr are the name and abhreviation to display on an event if Jabelling by
operation identifier is requested. Optype and class are used the same way they were used in
.IMOVSYNCrC,

Dependency Abstraction This section defines the subset of dependencies actually displaved
in the graph. It uses the classes defined in this file, and the format is the same as in
.MOVSYNcIC.

3 Using Moviola as part of the PPUTTs Toolkit

The graphical display capabilities of Movtola make it a useful too! for analyzing the correctness
and performance of a concurrent program through the observation in detail of syuchronization anid
communication behavior. Despite this utility, we want and need additional functionality bevon! the
graphical manipulation facilites we have described thus far. Source language debuggers. statistical
analysis tools (including profilers). and critical path analysis are potential extensions that we might
want to make directly to Moviola . The set of extensions, however. is not limited to these few.
Each source language. each target machine. and many application programs will need individually
customized extensions. Furthermore, the sheer size of some execution graphs and the drudgery of
traversing them by hand will cause some users to want to make ad hoc extensions in response to

phenomena seen in a particular execution graph.

To satisfy these needs it is necessary that Moriola be made both dynamically extensible and
programmable. The PUTTs Toolkit provides these properties by running Mowviola and other parallel
program analysis tools under a Lisp system. Running Mouviola in this mode provides extended
functionality both by allowing one to use a library of existing analysis tools. to write one's own

extensions. and to interactively program ad hoc analyses.

3.1 Starting Moviola under the Toolkit

The first step is to start the Toolkit. See the online manual page for pputts to get started. Ppufts
is a modified version of Kyoto Common Lisp. When it starts up you are interacting with the Lisp
interpreter. To obtain the data needed for finding the other parts of the Toolkit, pputts reads a
file accessed by the path “../.tools”. To list the available PPUTT's tools execute the Lisp form
(pputts-list-tools). The function (pputts-load toolrame) will load and initialize one of the listed
tools. For example, (pputts-load 'moviola) loads Moviola . Once Moviola has been loaded the

simplest method of starting it is to execute the form (moviola-start &optional hist-dir :display

15

Dume Data Labe | l Display Lines Filters]Huco“'\oous ;
PR e e SN > o0 VS N
1 P! (1
S o
-
t , —_—
g -
f_ o]
o OO0 :
[H %o X SR
S5 s g ; Pd
[
o)
- P o0
- R % %
% g
; rw R Pvé;‘
<
- po PN Il
i R &
- s
L
t Event Dats
+ Event 2
|- ™~ ”
F B Ho ader 3
& P 5 % -
o
i 3
r Sink B
[55 t
: ~
[2
< 33 2
- X -
r 7 (al]
L X)R N ey
a8 23 . P
aK 9
13 2 . x : 28
3 3
E 3 R 5 R R .
dEs 3 ey
Tt owe—m =1

Figure 7: Selecting a Source Node

name+ trc rename). This is equivalent to starting AMoviola from the command line and has the same
arguments. {Note that “:display”™ and “:r¢” are keywords for the optional arguments that follow.)

A Moviola window is opened and you can interact with it exactly as you did in standalone mode.

Mouiola ’s functionality is extended by loading packages of analysis tools. For example. to
load the standard waiting-statistics tool. execute (pputts-load *waiting). The following functions

tabulate the waiting time of an execution by process or by object.

(all-process-wait-total history) ->list: This function returns a table in list form of total wait-
ing time tabulated by operation for each process.

(all-object-wait-total history) ->list: This function returns a table in list form of total waiting
time tabulated by operation for each object.

3.2 Critical Path Analysis

16

Figure 8: Highlighted Critical Path

17

Another useful tool performs critical path analysis. Toload this tool execute (pputts-load *critical).

The package defines the following functions and variables

critical-path: Tocompute the critical path from a source event to a sink event execute (critical-
path source sink), where source and sink are events. The list of events returned is the
critical path. Executing (main-critical-path history) will compute and return the critical
path from the first to the last event of the history.

critical-env: Executing (critical-env) installs an interactive facility for computing and dis-
plaving critical paths. The user interface is through several items that critical-env adds to
the event and history pop-up menus. (The utility for modifyving menus utility is explained
in section 4.2.3.) Two new event menu selections labeled “Source” and “Sink™ are used to
define the source and sink events. A new history menu selection labeled “Use Sync” toggles
between using all dependencies in computing the critical path and using only those that are
displayed. After selectiug source and sink events (figure 7). the user chooses a new history
nictiu selection labelea “Critical Path” to compute the critical path. The path is highlighted.
the rest of the synchronization history is not displayed, and the path is associated with the
history.
The history menu selection labeled "Crtel Path 27 will calculate the critical path. and then
calculate a second path which is found by setting all of the edges in the critical path to zero
and then recalculating the longest path (with respect to execution time). Only the events
in the two paths will be displayed. and the events in the second path that are different {rom
the first are highlighted. Botii paths are associated with the history.

The reiations between the Lisp objects computed in each of these actions and the history
are creaied and maintained by an “asscciatior utility™. (See section 4.2.2.) The values of
the globa! variables *source-id* and *sink-id* are ‘he indices used by the association utility
for storing and retrieving source and sink events. Similarly, it uses the indices *sync-id* to
store the flag that specifies which set of dependencies tc use, *path-id* for the critical path.
and *path2-.4* for the second path.

4 Programming Moviola with Lisp

The Moricle tool supplies the programmer with a set of functions that access and manipulate
Moviold’s iniernal data structures. There is also a set of utilities that allow Lisp functions and vari-
ables to be accessed through the Moviola user interface, thus extending it. New tools are integrated

with the rest of the system by using these facilities.

4.1 History functions

The following functions access and manipulate the internal Moviola data structures that comprise

a synchronization history.

4.1.1 Sync Functions

These functions contro] the choice of dependency sets used for the display. If eveat~sync is turned

on. the dependencies defined by the synchronization package in .movsyncrc.package are used rather

18

than the dependencies defined by the user in the file .moviolarc.package.

func: (event-sync)-> t/nil
func: (event-sync-on)
func: (event-sync-off)

4.1.2 The Cross Line Data Structure

/* The current sync status */
/* Turn sync status on #*/
/* Turn sync status off */

An xline structure represents a cross line between two events. For each event the first x1ine in the

x'ine-out linked list is a link to the next event (if it exists) in the same process. Similarly the first

x1line iu the xime-in linked list is a link to the previous event (if it exists) in the same process. The

rest of the cross lines are the other dependencies defined in the defaults files.

macro: (xline-in xline) -> xline /*
macro: (xline-out xline) -> xline /*
macro: (xline-from xline) -> event /*
macro: (xline-to xline) -> event /*
macro:

macro: (xline-field xline) -> int
macro: (xline-field-set xline int)

Next
Next

in cross line */
out cross line */

The event pointing */
The event pointed to */

(xline-status window event) -> *nodisplay* | *display* | *highlights

The field field of the structure is reserved for the use of the Lisp programmer.

4.1.3 The Event Data Structure

An event structure represents an event in the synchronization history.

macro: (event-next event) -> event /*
macro: (event-id event) =-> int /*
macro: (event-history event) -> history /#
macro: (event-rel-x event) -> int /*
macro: (event-rel-y event) -> int /*
macro: (event-log-y event) -> int /#*
macro: (event-height window event) -> int /#
macro: (event-head event) -> event /*
macro: (event-head? event) -> t/mil /*
macro: (event-last event) -> event /*
macro: (event-out event) -> xline /=
macro: (event-in event) -> xline /*
macro:

macro: (event-incomplete event) -> t/nil /=
macro: (event-prev event) -> event /*
macro: (event-objectID event) -> int /%
macro: (void-objectID? int) -> t/nil /*

/* (incomplete or division event) #*/
macro: (event-vrsn event) -> int
macro: (event-opid event) -> string

/*
/*

19

Next event in process */

Event id */

The history of this event */

The relative x position */

The relative y position */

The logical y position */

The event height =/

The head event of this process */
Is the event the head event? »/
The last event in this process =/
The first out cross line */

The first in cross line */

(event~status window event) -> *nodisplay*/sdisplay*/*highlight*

Is the event incomplete? #/

The previous event in this process #*/
The id of the object acted upon */

Is the object id void? »/

Version of the object acted upon */
The operation label of the event */

macro: {(event-stime event) -> int /* The start time of the event =/

macro: (event-access event) -> int /* The access time of the event =/
macro: (event-exit event) -> int /* The exit time of the event »/
macro: (event-wait-time event) -> int /* Time the event waited to access */
macro: (event-work-time event) -> int /* Time the event worked on object =/

The event fields fieldi and field2 are reserved fo: the use of the Lisp prograrnmer.

macro: (event-fieldl event) -> int
macro: (event-fieldi-set event value) -> int
macro: (event-field2 event) -> int
macro: {event-field2-set event value) -> int

The event numin field is set to be the number of “interesting” incoming edges by the function

hist-reset-incounts. At other times this field can be used as desired by the Lisp programmer.

macro: (event-numin event) -> int
macro (event-numin-set event value) -> int
macro. (event-numin-dec event) -> int /* Decrement the numin field %/

func (center-win-event window event) /* Center an event in a graph pane. */

4.1.4 The History Data Structure

These forms return glebal information about a history.

macro. (hist-numbel -procs hist) -> int /* The number of processes */

macro: (hist-name hist) -> string /* The name of the program */

macro: (hist-process hist int) -> event /* The head of the int’th process */
macro: (hist-mainproc hist) -> int /* The head event of the main process */
macro- (hist-firstevent List) -> event /* The first event in the graph */
macro: (hist-lastevent hist) -> event /* The last event in the graph */

Hist-reset-incounts recomputes the event-numin fields of all events in the history. The only
edges regarded as “interesting” in this computation are those that can be traversed by paths rooted
at the specified event avent. This function is used for computing a topological sort of the graph.

The tield1 and field2 of the event structures are modified by this function.

macro: {hist-reset-incounts hist event)

4.2 User Interface

The following functions and variables are used to affect the cu. ent state of the display and to extend

the Moviola user interface.

To make a new tool known to the Toolkit, execute (pputts-save keyname filename &rest dependencies).

where keyname is the name by which the tool should be known, filename names the file in which to
find it, and dependencies lists the tools upon which this new tool depends. Attempting to load the

new tool will ensure that all the dependencies are also loaded.

20

4.2.1 *moviola-window™ and *moviola-history*

These two global Lisp variables point to the most recently referenced Morviola window and history,
respectively. If a window 1s referenced without being associated with a histery, then *moviola-
history* will be null. Similarly *moviola-window®* is null if there is a reference to a history no

associated with a window.

4.2.2 Association utility

The association utility maintains association lists attached to all windows and histories T define
a new fleld for either type of ohject. use the functions (new-win-assoc tntt_functionj or (new-
hist-assoc tnit_function). These functions return the integer index of the newly creats 1 fii !
Intt_function is used to initiahze the new field. It should take a window (respectively. a bistory
as its argument and return an initial value. It is called for every existing asscaiation st whe:
the new ficld is created and it is called whenever a new association list is created. The fintions
(win-assoc windouw itd-num’er) and (hist-assoc history id_number) return the value of a fi .
The funcuons (change-win-assoc window id-number neu_value) and (change-hist-assoc windou
1d.number new_value) set the value of a field. The functions (remove-win-assoc td_nu™ber; a.?

(remove-hist-assoc td_numbcr) remove fields from the lists.

4.2.3 Menu Item Utility

The functions (add-event-item function init_function label) and (add-history-item function it _fun. ‘o ¢

install new 1tems in the pop-up menus. The argument function specifies a function to call wlin the
menu item is selected. It takes three arguments: the current window, the selected object (event or
history). and the current state of the menu item (ni! for off and t for on). Function returns the
new state of the menu item. The argument inif_funclion specifies a function to initialize the item
when the menu activated. Its arguments are the current window and the selected object {event or
history). The argument label specifies a label for the item. It may be any object that the (string)
function will take. The functions (remove-event-item label) and (remove-history-item lalel)

remove menu items.

4.2.4 Lisp Filter Utility

The display status of events and cross lines can be affected by the functions (set-event-status win-
dow event status) and (set-xline-status window zline status), where status can be one of *display*.
nodisplay, or *highlight®*. If no other filtering has been requested from the user interface this will
be the mode in which the object will be displayed. If other filters have been requested the maode is

computed by combining the requests as described in section 2.1.3.

21

4.2.5 Process Ordering Utility

The function (set-proc-order windou procorder) specifies the set of processes to be displaved The
list procorderspecifies both the set and the order in which 1t is to be displaved. A process can appea

at most once.

4.2.6 Other Variables
The following global variatles are alsc used by the utilities. Changing them can be dangerous

win-hist-table Tlis is an ass-ciation list binding histeries to windows

win-table and *hist-table® These are lists of the association lists managed by the as~-ja-
tion utility. The next available id_number i1s kept in *win-assoc-1d* and *hist-asscc-id* The
mitialization functions are kept in *intt-win-assoc* and *mit-hist-assoc*.

*cvent-function-table® and *hist-function-table* These are tables that hold the functinns
hound to dynanucally created menu items 1in the event and history menus.

*procorder® This is the list of process numbers that specifies the set of dispiaved processes

4.3 History and Window Functions

Thes functions are used to control mnltiple histories and windows.

macro: (hist-draw-display hist) /* Redraw the graph =/

macro: (init-history filename &optional defaults) -> history /# Load a history =/
macro: (new-window &optional displayname) -> window /% Open a window */
macro: {moviola-bind window histcry) /* Bind a history to a window =/

macro: (free-hist history) /% Free a history */

macro: (free-win window) /% Free a window */

5 Instrumented Synchronization Packages

Moviola 1s structured 1o support the sirmultaneous use of multiple instrumentation packages. Each
instrumentation package requires that a backend be written for it and as many backends as are

needed can be compiled into Meriole .

There are currently two instrumented synchronization packages in use. We will describe the
package we use for programs on BBN Butterfly (TM) Parallel Processor that run directly with the
Chrysalis (TM) operating system. There is also a package for the Lynx [Scott, 1986) programming

language on top of that base.

In the Chrysalis backend there are three types of shared object. The first type is a shared memory
ohject whose structure is defined by the user. The package provides primitives for a single writer,

multiple readers locking protocol. The second type is a Chrysalis shared event object. A Chrysalis

22

event can be thought of as a mailbox owned by a single process. The event can b0l a single Jonz
Integer at one time. Any process can post to any event. but only the owner can read froan one The
third type of object is a Chrysalis shared duvalq. This is a shared object that holds a hew? and ta!
pcinter to a queue. A process can atomically write to either the head and the tail of a dualq. hut
a process can ouly read from the head of the queue. Hence the dualq can double as a stack. The

following event types are generated by the package.

5.1 Process Header Events

MASTER_PROCESS: operation type = 0
objectlD = a process 1D

In each execution the first process to start js the master. The master process e der contains

the time the process took from start to finish. the number of events i the prooose an b o
pointer to the data structure representing the syvnchronization histery. This event ae e
actualiy read from a data file. but 1s created by Moeviola to mark the beginnine o the
process.,

PROCESS _ HEAD: operation type = 1
object]D = a process 1D

All other processes are marked with process-head events.

5.2 Shared Memory Objects

The package provides a set of operations for 2 single-reader. multiple-wniters locking procoer
be used with shared memory objects. Some of the operations for obtaining lacks cherk thar &
user-defined predicate is satisfied before actually obtaining the lock and returning to user ¢ i
These primitives are implemented by evaluating the predicate in a polling loop. The process LUl
an exclusive lock on the object while the piedicate is being evaluated. If the operation alinwes
concurrent access. the lock i1s then weakened before the primitive returns. The purpose of thew
primitives is to provide direct support for events consistent with complex communication prinnttes
For example. to write into a message buffer. a process must wait unti! it can get a write-lock an
until the previous message has been removed. By including polling within the primitive operati-n
the interval from the first attempt to obtain the lock to success appears as a single event in the

history.

MEMORY_POLL.WRITE_START: cperation type = 2:
objectlL = a shared memory object 1D

A memory-poli-write-start event returns with a write lock.

MEMORY_POLL READ _START: operation type = 3:
objectl) = a shared memory object 1D

A memory-poll-read-start event returns with a read lock.

23

MEMORY_POLL_NULL: operation typ+ = 4.
object!D = a shared memory object 1D

A memory-poll-null event returns when the predicate is satisfied but does not obtain an
locks.
MEMORY_DELETE: operation type = i:
object]D = a shared memory object ID
A memory-delete event deletes the sharcd olject.
MEMORY _READ _START: operation type = 17.
object]D = a shared memory olject 1D
A memory-read-start event is a blocking operation that obtains a read lock for the shared
object.
MEMORY_READ _END: operation type = 1&:
objectID = a shared memory object 1D
A memory-read-end event releases the read lock on the specified object.
MEMORY_WRITE_START: operation tyvpe = 19;
object]D = a shared memory object ID
A memory-write-start event is a blocking operation that obtains a write lock on the object.
MEMORY_WRITE_END: operation tvpe = 20
objectlD = a shared memory object 1D

A memory-write-end event will release a write lock.

5.3 Events on Chrysalis Events

EVENT_RESET: operation type = 6

object]D = a ‘‘hrysalis shared event object 1D

An event-reset event clears and empties a specified mailbox.
EVENT_POST: operation type = 7:

objectID = a Chrysalis shared event ohject 1D

An event-post event places the letter in the specified mailbox if it is empty.
EVENT_DATA: operatior ivpe = §:

objectID = a Chrysalis shared event object 1D

An event-data event returns the letter from a specified mailbox. If there is no letter, the
reset value is returned.

EVENT_DELETE: operation type = 9:
objectID = a Chrysalis shared event object 1D
An event-delete event deletes the mailbox.
EVENT_WAIT: operation type = 10:
objectlD = a Chrysalis shared event object 1D

An event-wait event blocks until a letter is received in one of its mailboxes. It then returns
the ID of the mailbox in which it was received.

24

EVENT_MWAIT: operation tyvpe = 11:
object]D = a Chrysalis shared event object 1D

An event-mwait event will block until a letter is received in one of several specificd mailboxes
It then returns the ID of the mailbox in which it was received.

5.4 Events on DualQueues
DUALQ_ENQ: operation type = 12:
objectlD = a Chrysalis shared dualq object 1D

A dualg-enq event places a value on the dualq at the head or tail as specified. A bus error
occurs if the dualq was full.

DUALQ_TRY_ENQ: operation type = 13:
objectID = a Chrysalis shared dualq object ID

A dualg-try-enq event does the saime as a dualq-enq except it returns FALSE if the dualy
was full.

DUALQ_WAIT: operation type = 14:

object]D = a Chrysalis shared dualq object ID

A dualg-wait event blocks until it can return a value from the head of the dualq.
DUALQ_POLL: operation tyvpe = 15:

objectID = a Chrysalis shared dualq object 1D

A dualg-poll event returns a value from the head of the dualq if one exists.
DUALQDELETE: operation type = 16:

objectID = a Chrysalis shared dualg object ID

A dualg-delete event deletes the dualg.

5.5 Other Events

USER _DEFINED_TAG: operation type = 21:
objectlD = no object 1D

A user-defined-tag event can be inserted by the user at “interesting” points in the execution
of a process.

SYSTEM DEFINED_TAG: operation type = 22:
objectlD = no object ID

A system.defined_tag event is generated by the system at “interesting” points in the execu-
tion of a process.

EVENT_ERROR: operation type = 23:

objectID = no nbject ID

An event-error event occurs when the process is killed during the execution of an event.
DIVISION: operation type = 24:

objectlD = no object ID

A division event is a synthetic event inserted by Mouviola in every process when no process
is doing anything interesting (not touching any shared object) for a reasonable amount of
time. These make the display more compact.

25

A Directories and Files

On the shared file systemn in the Computer Science Department at the University of Rochester the
following directories and files are of interest:

/u/replay is the repository for PPUTTS-related material.

/u/replay/news contains documentation for recent updates of PPUTTS. This includes both the
text for appendices updating this guide as well as notes on recent changes that have not vet
been put in final form.

/u/replay/lib contains the standard versions of the Moviola initialization files. It also contains
the files pputts.lsp and .tools used in the initialization of the PPUTTs version of Lisp.
The directory containiug PUTTs manual pages is also located here.

/u/replay/bin contains symbolic links to the executibles.
/u/replay/src/maoviola contains all of the Moviola source code and executibles.

moviola is the standalone version of Moviola . There is a link from /u/replay/bin.

moviola.o is the Moricla tool loaded by Lisp.

castl.c and include/castl h contain the source code for the Chrysalis backend.

c-int.c, lisp-int lsp, c.lsp. *..sp define the interface between Lisp and and tools written
in C, specitically ! {01'1'012 .

Ju/replay /src/toolkit contains the locally modified version Kyoto Common Lisp that forms the
basis for the Toolkit

/u/replay/src/lisptools contains the tools written in Lisp.

26

References

[Bernstein et al.. 1987} P. A. Bernstein, V. Hadzilacos. and N. Goodman, Concurrency Contrel and

Recovery tn Database Systems, Addison Wesley, 19587.

[Duda et al., 1987) A. Duda. G. Harrus. Y. Haddad, and G. Bernard. “Estimating Glohal Time in
Distributed Systems,” Proceedings of the 7th International Conference on Distributed Systems.
pages 299-306, September 1987,

(Fowler et al., 1988] Robert J. Fowler, Thomas J. LeBlanc, and John M. Mellor-Crummey. “Au
Integrated Approach to Parallel Program Debugging and Performance Analvsis on Large-Scale
Multi-Processors.” Proceedings of the ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging. pages 163-173, May 1988.

[Gettys and Scheifler, 198C7 Jim Gettys and Robert W. Scheifler. “The X Window Systen.” AV
Transactions on Graphics. V5(2):79-109, April 1986.

[Lamport. 197&] L. Lamport. “Time. Clocks. and the Ordering of Events in a Distributed Svsten”
Communications of the ACM, V2.1(7):558-563, July 1978.

{LeBlanc and Mellor-Crummey. 1987] Thomas J. LeBlanc and John M. Mellor-Crummey. "Deliug-
ging Parallel Programs with Instant Replay.” JEEE Transaclions on Computers. C-30(4;:471-4~2.
April 19%7.

[Scott, 1986] M.L. Scott. “LYNX Reference Manual.” Technical Report BPR 7. Computer Sejener
Department. University of Rochester. Rochester, NY, August 1986, (revised).

(Yuasa and Hagiya; Taiichi Yuasa and Masami Hagiya, A'yefo Common Lisp Report.

27

